Analytical Chemistry Testing by Instrument

New Jersey Laboratories offers analytical testing following USP, FCC, and in-house methods, as well as any proprietary methods requested and provided to us by our clients. If you require custom methods, we will work with you to create a method that suits your needs.

 ICP-MS

ICP-MS is an acronym for Inductive Coupled Plasma Mass Spectroscopy. ICP-MS is an analytical instrument that combines inductive coupled plasma technology with mass spectroscopy for elemental analysis by generation of ions.

What is ICP-MS?

For more details on ICP-MS, please find the material on this page: ICP-MS

ICP-MS is an acronym for Inductive Coupled Plasma Mass Spectroscopy. ICP-MS is an analytical instrument that combines inductive coupled plasma technology with mass spectroscopy for elemental analysis by generation of ions. An ICP-MS combines a high temperature Inductively Coupled Plasma (ICP-MS) source with a mass spectrometer (MS). The ICP source converts the atoms of the elements in the sample to ions that are separated and detected by mass spectrometer. The ICP-MS combines multi-element capabilities with detection limits equivalent or below that of GFAA and can obtain isotopic information. The instrument is capable of detecting metals and several non-metals at parts per trillion (ppt) levels.

ICP-MS is a high-tech, fairly recent addition to elemental analysis. As a result, there are no specified processes or test methods that currently exist for this technology. The technology often continues to use more conventional instrumentation, such as atomic absorption, which has been around for hundreds of years, and is not very sensitive. However, given the precision of ICP-MS testing, the FDA has been requiring ICP-MS testing more frequently.

Given the absence of existing methodologies, companies requiring ICP-MS testing must often create an ICP-MS protocol for a method and submit the protocol along with the product to a laboratory. However, at New Jersey Laboratories, we specialize in developing and validating a custom method for your product according to your specifications, and then creating and writing an ICP-MS protocol for you. We write comprehensive protocols that are accepted by the FDA, and we work closely with our clients on the protocol, explaining our process every step of the way. Our reports are solid and withstand FDA scrutiny.

High Performance Thin Layer Chromatrography (HPTLC)

HPTLC is a modern technique that allows the proper performance of identity tests on raw materials, such as botanicals. Unlike more conventional identification tests that used filter paper dipped into a beaker, HPTLC involves sophisticated instrumentation, standardized and documented procedures, as well as validated methods.

What is HPTLC?

HPTLC is a modern technique that allows the proper performance of identity tests on raw materials, such as botanicals. Unlike more conventional identification tests that used filter paper dipped into a beaker, HPTLC involves sophisticated instrumentation, standardized and documented procedures, as well as validated methods. Results can be reproduced in a CGMP environment, and meets the FDA’s requirements for 100% identification of botanicals.

HPTLC testing also allows for limit tests and impurities testing in raw materials.

Why HPTLC?

Other techniques only allow for partial identification. Microscopy is limited to plant parts. IR techniques have difficulties with the natural variability of botanical materials, and HPLC focuses on quantitative comparisons of separated markers. Each is useful, but HPTLC is a single technique with a generally applicable approach that complies with the FDA requirement of 100% botanical identification.

When is HPTLC testing commonly used?

HPTLC testing is primarily used to identify botanicals. We provide identification of the following botanicals:

See full list here.

Gas Chromatography (GC)

Gas chromatography refers to the group of techniques used to separate compounds in a gas-liquid and allows volatile substances in the gas phase to be analyzed.

What is GC?

Gas chromatography refers to the group of techniques used to separate compounds in a gas-liquid and allows volatile substances in the gas phase to be analyzed. In gas chromatography, a sample’s components are dissolved in a solvent and vaporized. By distributing the sample between two phases – a stationary phase and a mobile phase – the analytes are separated.

GC allows us to pick up small molecules in a big structure, so we often use GC to test fatty samples, which typically contain small components.

When is GC commonly used?

GC is used in many different fields, such as pharmaceuticals, cosmetics, and even environmental toxins. Since the samples have to be volatile, human breathe, blood, saliva, and other secretions containing large amounts of organic volatiles can easily be analyzed using GC.

GC is also used to analyze air samples.

High Performance Liquid Chromatography (HPLC)

HPLC is a chromatographic method used to separate a mixture of compounds in order to identify, quantify, or purify each component in a mixture.

What is GC?

Gas chromatography refers to the group of techniques used to separate compounds in a gas-liquid and allows volatile substances in the gas phase to be analyzed. In gas chromatography, a sample’s components are dissolved in a solvent and vaporized. By distributing the sample between two phases – a stationary phase and a mobile phase – the analytes are separated.

GC allows us to pick up small molecules in a big structure, so we often use GC to test fatty samples, which typically contain small components.

When is GC commonly used?

GC is used in many different fields, such as pharmaceuticals, cosmetics, and even environmental toxins. Since the samples have to be volatile, human breathe, blood, saliva, and other secretions containing large amounts of organic volatiles can easily be analyzed using GC.

GC is also used to analyze air samples.

Wet Chemistry

Wet chemistry analysis is performed on liquid samples using glassware and other analytical equipment, such as UV/CIS spectrometers, infrared spectrophotometers (FTIR), and polarimeters.

What is wet chemistry?

Wet chemistry analysis is performed on liquid samples using glassware and other analytical equipment, such as UV/CIS spectrometers, infrared spectrophotometers (FTIR), and polarimeters. Wet chemistry allows us to analyze samples that are too small for other instrumental methods.

For wet chemistry, we can perform tests for lead content, color, identification, water, fats, peroxide values, titrations, oxidation, acid value, sulfur dioxide, etc.

In what fields are products typically tested using wet chemistry?

We typically test products using wet chemistry in the biochemical and pharmaceutical fields. For example, we often test supplements, raw materials, heavy metals, botanicals, excipients, etc.

Headspace GC for Residual Solvents

In recent years, testing for residual solvents has grown in demand as the demand by the FDA for such testing has increased. New Jersey Laboratories owns the latest technology in this space, called Headspace GC (HSGC).

What are residual solvents?

Residual solvents in pharmaceutical products are organic volatile compounds that are used or created when drug substances, excipients, or additives are manufactured, prepared, or packaged and stored. Residual solvents are sometimes crucial in the synthesis of drug substances. Often, residual solvents are necessary to ameliorate the quality of drug substances or excipients. However, because they have no therapeutic value, if residual solvents are not completely removed by practical manufacturing methodologies, they must be evaluated and justified.

Pharmaceutical products should contain low levels of residual solvents as determined by safety data. However, residual solvents may be harmful to human health and to the environment if their presence exceeds tolerance limits as determined by safety data. As a result, residual solvents testing has become an important quality control player in pharmaceuticals.

In recent years, testing for residual solvents has grown in demand as the demand by the FDA for such testing has increased. New Jersey Laboratories owns the latest technology in this space, called Headspace GC (HSGC). HSGC is ideal because of its ability to quantify individual solvents. Although most laboratories do basic testing on residual solvents, New Jersey Laboratories also performs more difficult tests on solvents such as poloxamers.

We are highly proficient in this area, and can walk you through every step.

When would you commonly test for residual solvents?

Testing for residual solvents is most common in the pharmaceutical field, where manufacturers are required by regulation to ensure that pharmaceuticals are free from toxicologically significant levels of volatile organic compounds.

What methods do you follow for residual solvents?

We perform the following methods for residual solvents:

USP Chapter

Test

<228> Ethylene Oxide and Dioxane
<467> Organic Volatile Impurities
<469> Ethylene Glycol, Diethylene Glycol and Triethylene Glycol in Ethoxy1ated Substances
<525> Sulfur Dioxide

Laboratory Testing Services

New Jersey Laboratories offers analytical testing following USP, FCC, and in-house methods, as well as any proprietary methods provided by our clients upon request. If you require custom methods, we will work with you to create a method that suits your needs.

To see a complete list of the Micro & Chemistry tests we perform, click here:

Testing Services
Ready to request a new customer testing quote?
Need more information?

Our Quality Mission

Learn more about our Quality Assurance Program and how we promote Regulatory Compliance Transparency.

Testing Services

New Jersey Laboratories offers analytical testing following USP, FCC, and in-house or proprietary methods provided.

Ready to Discover the Essential Element in Analytical Testing?

To request a new customer quote for raw materials or finished products testing

Get Started Here